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Summary 

This paper presents a method to describe and forecast the incidence of AIDS 

in Brazil using time series models. The method is based on the class of generalized 

exponential growth models and uses the ideas of non-linear dynam.ic modelling. 

The aim is to provide good predictions and to inform sequentially on the asymp­

totic or explosive behaviour of the data series. Intervention to model unexpected 

changes in the data, on-line variance estimation and variance dependence on the 

mean are used to adequately model the data. The data is analysed with some 

particular models from the above cla.ss and the resulting inferences compared in 

terms oí short-term and long-term predictive perfomanc~ and model fit. 

Keywords: Predictive performance, Generalized exponential growth models; Dy­

namic models; Intervention. 
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1. Introduction 

The epidemics of AIDS is increasingly being recognised as a disease of prime impor­

tance and a great deal of research effort is now focused in primarily understanding and 

hopefully controlling and erradicating it. In the past few years, statisticians have begun 

to contribute to this research and a recent issue of the Journal of the Royal Statistical 

Society, Series A is just an example of this increasing trend. 

Among the main areas of research are the studies of the number of infected individuais 

in a given population, the time for the development of the disease and the number of 

individuais that have developed the disease. Malice and Kryscio (1988) tackled the problem 

by using an epidemic model to describe the nuinber of infected and diagnosed individuais 

at any time and relate these via an infection rate which essentially describes the incubation 

period for AIDS. De Gruttola and Lagakos (1987) describe tb" dic;;tribution of the number 

of infected individuais via a convolution of the distribution of the incubation time and the 

number of AIDS cases. Our task is simpler because we are only dealing with the number of 

notified cases. The approach differs substantially, however, through the use of time series 

models. This seems the natural approach since the data is time indexed and proves to be 

adequate in the sequei by allowing many useful facilities to be implemented. 

The data series considered is the number of monthly notifications of AIDS cases in 

Brazil from September /85 to January /88 plotted in Figure 1 and given in the Appendix. 

It shows a stable pattern, basically linear up to January /87 w hen its pattern drastically 

changes. The overall trend is very irregular and can only be adequately described with a 

non-linear model. This feature is probably dueto the nature of the disease, still in its onset, 

and the implementation of policies to" control it, but can also be related to undereporting 

and the aggregation of data from a country as large and uneven as Brazil. This is also 

probably the main cause of decrease in July /87. These points are briefly discussed in the 

final Section. 

< Piace Figure 1 about here > 

The importance of the study of AIDS in Brazil cannot be overstressed since it is 

becoming the second largest country in number of cases. \Vhen one consiàers that the 

odds in favóur of discovery of cure within the next years are slim and the main weapon 

against AIDS is control via m~ive educational campaigns, one realises the problems facing 
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Brazil and, to some extent, other underdeveloped countries. 

From a statistical point of view, it is important to have an appropriate model descrip­

tion for two reasons. Firstly, because it allows one to produce reliable predictions to the 

future and decisions at government and health leveis can be taken accordingly. Secondly, 

because construction of adequate models allows identification and monitoring of features 

of interest in the series. In the specific case the AIDS data series, the models used are 

able to identify the acceleration of spread of the desease via a single parameter. H thia is 

smaller than one, the process is expected to eventually reach an a.symptote that one hopes, 

to be as low as possib]e. Otherwise, tbe nature of the process is explosive and no such 

limit is attainable. This explosive behaviour makes constant monitoring of this specific 

parameter of vital importance. It should indicate whether the process is out of control and 

additional measures are req uired. Signals would then be triggered to government policy 

bodies and international organizations like WHO that would act accordingly. 

It is shown that far from being constant, this parameter wanders around the value of 

I, sometimes above it , refiecting the changing pattern of the process at hand. Dynamic 

models are recommended in such cases because they naturally allow for this variation. 

They also prove useful to model intenvention when more dra.stic variation takes place as 

ia the case when t = February/81. 

In the next Section, the models used are presented. The commonly used logistic curves 

are considered within a larger class of potentially useful models called generalized expo­

nential growth models (GEGM). This cla.ss is obtained after a Box-Cox transíonnation on 

the mean trajectory of the series following a logistic curve. A simpler model representa­

tion giving essentially the same results ia obtained via a reparametrisation and used in the 

sequei. This essentially reduces the non-linearity inherent to logistic curves and GEGM's. 

· , Section 3 summarises the main elements used in dynamic Bayesian inferences and discusses 

methods of comparing the performance of diferent models. These results are applied in 

Section 4 to analyse the AlDS data. A number of models are used and many features 

of dynamic modelling are described. In particular, it is shown that a correctly signalled 

intervention is vital for fast adaptation to changes. The problem of discrimination among 

possible alternatives within the class of GEGM's is also discussed and the tentative con­

clusion points at long-term forescating as the ultimate test. Section 5 draws on some final 
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comments with respect to the class of GEGM's and other problems related to AIDS data. 

2. Generalized Exponential Growtb Models 

2.1. Definition 

One of the key elements of a time-series model is its mean response function defined 

as 

where Yt is the observation made at time t and f1. is the vector of para.meters used to model 

the series. Standing at any time t, the future trajectory of the series can be obtained by 

looking at Jlt+k as a function of k and used to define a model. A commonly used model 

for the mean response function in epidemics (Bailey, 1975; Duong & MacNeill,l987) is the 

logistic curve given by 

(1) 

f3a is the key parameter here. Ií fia < 1, Jlt will eventually converge to the asymptote /31 1 

and otherwise #Jt increases without limits provided /32 < O. The future tra.jectory of the 

series at time t is given by the inverse of 

and follows the same pattern of the mean response. 

The logistic curve can be embedded in a more general family of curves by allowing 

transformations on the mean other than the inverse. A suitable class is genera.ted by 

allowing simple polinomial transformations (Box & Cox, 1964) on the mean as 

- { Jl). ' if ,\ f o 
g(p) - log p, if ,\=O (2) 

The transformation g is ~o called a link because it relates the mean to the pá.rameters 

used to describe it. The logistic curve is obtained for ,\ = -1. The Gompertz curve given 

by 

Jlt = exp(l3t + fJ2 /3~} 

is qualitatively similar to the logistic curve and is obtained for ,\ = O. It is important 

to make it clear that this transformation is performed on the mean rather than on the 
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observation. These are képt at their original mea.surements to retain interpretability. Het­

eroscedasticity problems implied by this approa.ch are dealt with in Section 3. 

Exponential curves are given, of course, by À = 1. Since this represents the sim­

plest form of link, the identity, the class is named generalized exponential growth models 

(GEGM). Throughout GE(jM's, the influence of (la in the qualitative behaviour of the 

series is the one observed \":' Íth the logistic curves depending basically on whether it lies 

below or above 1. EssentiaHy, the transformation parameter À is unknown and ha.s to be 

estimated. This has proved to be a difficult task (see Mar-Molinero, 1976) and we do not 

attempt it here. We rather consider the above three main forms and compare them in 

many diferent ways. 

Consider now a vector sequence Bt = ( 81 ,t, 82,t, 83,t) recursively defined via 

81 t = 81 t-1 + Oz t-2 J J J 

82 t = 83 t-1 82 t-1 
J ' ' 

03,t = 8a,t-t 

and related to the mean response function as 

g(J.lt) = Bt ,t 

(3.a) 

(3.b) 

(3.c) 

(4) 

Prior to (4), 81 represents the current level of the series, 82 is the current rate of change 

and 83 is a dampening or accelerating factor of this change depending on whether it lies 

below or above 1 respectively. Repeated use of (3.a-c) gives 

for f3x = Bt,t + 82,t/(l- Ba,t), {32 = -82,t/(l- Ba,t) and /33 = 83,t as shown in Migon & 

Gamennan (1988) . For thc"' purposes of this paper, it suffices to recognise that one can 

work with form (1)-(2) or (3)-(4) since they describe the same trajectories. The latter is 

chosen here because it reduces the non-linearity of the modr.l making it more stable in 

estimation. An alternative description is given by Meade (1985). 

A simplification is obtained by taking OJ,t = 1, V t. In this case, is straighforword to 

obtain future trajectory at t as 
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With an identity link (.-\ = 1), this specialisation gives the linear growth models (Harrison 

& Stevens, 1976). Although they are simpler and retain linearity, they are shown to be 

inadequate in modelling epidemics data like AIDS in section 4. 

2.2. Dynamic modelling 

As antecipated in the previous Section and suggested by Duong and MacNeill (1987), 

structural changes on the observed AIDS series are to be expected and have to be accom­

modated. These changes are generally adequately modelled with small disturbance terms 

that are added to the structure of the series. This can be implemented in model (3)-( 4) by 

adding a three dimensional disturbance term !!l.t to (3). This can be concisely written as 

~ = G (~- 1 ) + !Jlt, !Mt "' [Q, Wt] (5) 

The above notation specifies that !llt have Q mean and covariance matrix Wt increasing the 

uncertainty about fl and G is the function describing the deterministic part of the time 

evolution of ~as given by (3). Under this formulation, the dampening factor 03 is allowed 

to change in time thus making sense of (3.c) . 

Occasionally, major structural changes that cannot be catered for by small distur­

bances take place. In the absence of information on the nature of these changes, a parsi­

monious approach is to inflate the covariance matrix Wt increasing the uncertainty in the 

process and allowing it to be more adaptive to fresh information and less dependent on 

the past. This intervention proves very useful for the AIDS data as we show in Section 4. 

3. Inference Procedures 

The first step is to model the observational distribution of the series. It is assumed 

here that Yt follows a normal distribution with mean Pt· We have also assumed that 

V[ytlpt, t,6t) = t.6't 1 Pt to acc.ormnodate for the large range of values assumed by the series. 

When <Pt = 1, this is the variance law given by the Poisson model and comparisons with 

it are made in Migon & Gamerman (1988). G€nerally, <Pt is unknown and is estimated by 

the model. It is expected b be stable and to change only slightly with time. 

The inferential procedure is sequential processing one observation ata time as follows: 

(i) - at time t - 1 

~-tÍtPt-t, Dt-t "' [!L!t-t, </J't.!t Ct-d 

9t-tiDt-I "' G( nt-I/2, St-I/2) 
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where Dt-t is the information set at time t- 1 containing ali the information available at 

that time including the observed values Yt, · · · , Yt-l and G( a, b) is the Gama distribution 

with density proportional to 

(ii) - Evolution to time t can be performed through (5) to give the distributions for 

~lt/Jt, Dt-l· The time evolution for t,b is modelled via 

The factor 8v is generally taken a.s slightly less than 1 increasing the variance of t,b to reflect 

more uncertainty above its value. In this paper, 8v is taken as 0.98. When 8v = I, ~t 

retains the distribution of <Pt-l and t,b is essentially independenty of t. 
(iii) - One-step ahead }!redictions are given by the implied t distribution for ydDt-1· 

For more steps ahead, repea.ted use of (ii) and (iii) sequentially gives the distributions for 

k = 1 2 .. . 
' ' 

(iv) - the information obtained after observing !lt is used to update the distributions 

of ~lt/Jt, Dt and t/JtiDt. 
Full details ofthis cycle are given in Migon & Gamennan (1988) based on tbe inference 

for dynamk generalized linear model (West, Harrison and Migon, 1985). For non-linear 

models, the procedure follows Migon (1984). 

A simple method to define the matrices Wt is given by the discount approach ( Ameen 

& Harrison, 1984). The variance of each parameter is inflated to reflect the amount of infor­

mation lost. If 1008% of the information about Oi passes through time, set V[Oi,tiDt-t] = 
V[ei,t-dDt-t]/6i, i= 1, 2, 3. The implied value of Wt is a diagonal matrix with entries 

V[Bi,t-tiDt-t)(ói- 1 -1), i= 1, 2, 3. The static model is attained at Ót = Ô2 = 83 = 1. The 

discount concept is special]y helpful in specifying intervention. As. previously discussed, 

one wishes to substantially reduce the amount of information passing at these points. This 

can be achieved by considerably lowering the values of 8,. 

Inference for the AIDS series is primarily d'evoted to estimation of 03 and prediction 

of _future observations. The estimation of 1}3 can be based on the on-line distributions 

[BJ,dDt]. Time trajectories for 83 can be drawn taking the mean of these distributions 

i 
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as estimates. Particular attention is given to the relative position of these trajectories 

with respect to the value of 1. Similarly, time trajectories for </J- 1 based on the inverse 

of the mean of [<PtiDt], t = 1, 2, · · · provide an indication of the dispersion of the data, 

values above 1 indicating overdispersion with respect to the Poisson law of variance. They 

provide a rough guide to the way the model copes with the observational uncertainty in 

the series. 

The discussion of prediction is inherent to time series and a model can only be accepted 

if it leads to good predictions. Although of little dispute, this point has sometimes been 

overlooked by forecasters whose main optimality criteria is to obtain the best fit. This is 

also important but not essential. In the present formulation, the fit of the model is given 

by the sum of the squares of Yt - Yt where Yt is an estimate of J't taking the whole data 

(including yt) in to account. Predictive optimality is attained, for example, by minimization 

of a suitable function of the íorecast errors given by 

since Yt = l't + tt and E[et) = O, this is Yt - E[l't!Dt-t] which does not use Yt or any 

subsequent observation to estima te l't. 

4. Application 

The data. consists of 29 monthly notifica.tions of AIDS cases as provided by the officia.l 

Health Ministry agency in Brazil. It ranges from t = 1 (September/85) to t = 29 (Jan­

uary/88). The approach adopted here isto try out as many models as possible within the 

class of GEGM's and cómpa.re them. Unfortunately, ihere is no such tbing as tbe ultima.te 

test to discrimina.te between models. \V e are bowever essentially concerned with the ability 

of the model to predict well rather than fit the data well. See Migon & Gamerman {1988) 

for a discussion. Tbe measures of predictive performance can be divided in short-term 

a.nd long-term performances as a model can perform poorly in the long term but can be 

very effective in the nea.r future. The main measures of short-ten:ll performance are the 

predictive likelihood (West and Harrison, 1986) and the sums o f the a.bsolute and squared 

one-step ahea.d foreca.st errors. In tbis pa.per, we concentrate on the la.st one ta.king the 

sum only from t = 4 to a.llow the model to lea.rn about the tbree-dimensiona.l parameter 

specifying the mea.n. 
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With all the models, analysis starts with prior (~1 !~1, Do) ('V (Q.11 ~~~ Rt] where Q.1 = 
(a11, a12, ata)T, Rt = diag(r11, r12, rta) and ~tiDo "'G(.05, .05) implying that: 

i - E[~tiDo] = 1 and V[~tiDo) = 20 indicating large uncertainty about the initial 

guess ~~ = 1; 
ii- The interval with endpoints a1 i± 2yrii should contain Oi with probability roughly 

.95; the values of Q.1 and r11 , r12 and r13 corresponding to th~ exponential (À= 0), Gom­

pertz (À = 1) and logistic (À = -1) models are given in Tabl~ 1 below 

Table 1 

Prior moments specification 

Model ª-t 
À= -1 (.002, -.0001, .95) .05, .05, .05 

À=O (6, 4, .95) 1, 1, .04 

À=l (400, 50, 1) 400,100, .1 

It can be seen that the mean is positioned roughly where the data ia (observe that 

(.002)- 1 = 500 and e6 = 403.4) but with a large variance representing very little knowledge 

of the processa priori. The mean o f the 03 is positioned near 1 but slightly below for À = ±1 
but exactly at 1 for À = O. The reason being that exponential curves do not exhibit S­

shaped forms and therefore the only curves consistent with the data have 03 > 1. Small 

changes in either values of _g_1 or R1 will not cause any significant difference due to the 

large initial uncertainty. 

The evolution is set using the discount approach. This essentially subjective specifica­

tion is done considering 03 to be more durable than ()1 and ()2 and therefore, its information 

is less discounted. Among a range of possible values typically above .9, it was chosen that 

81 = ~ = .9 and êa = .95 for all three models except when À = -1 in which case, 8a is set 

to .98. As previously stated, the variance <liscount 8v is set to .98. A major feature of the 

series is a change of pattern at t = 18 (February /87). Any method not adjusting for this 

change is doomed to failure as we show below. Some form of intervention in the model is 

called for. As discussed in Section 3, this can be econonúcally achieved by lowering the 

discount values. In this case, it was considered that the change was basically due to drastic 

change in the levei and rate of change of the levei of the series and not the acceleration of 
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that change. This was implemented by setting Ót == ~ == 0.25 when t == 18, thus reducing 

by a factor of 4 the information on 81 and 82 and preparing for change. 

We started the analysis by using the simplest model on the class, namely the linear 

growth model (LGM). Tab!e- 2 gives the sum of squared errors o f this and other models. 

The reduction in error due to intervention is evident. H one allows 03 to be estimated by 

the data, one gets further reduction in forecast errors no matter what transformation on 

the mean is used. Also, there is a substantial reduction by intervening in the series. Also 

listed in Table 2 are the SSE for the static models, i.e., those assuming g_ specified by (3). 

Table 2 

Sum of squared one-step ahead forecast errors (SSE) 

Form ~f _growth f 
LGM I 

I 
I 

I 
Exponential I 

I 

Gompertz 

Logistic 

Discounts 

.9,.9 

.9, .9 

1, 1, 1 

.9, .9,.95 

.9, .9, .95 

1, 1, 1 

.9, .9, .95 

.9, .9, .95 

1, 1, 1 

.9, .9, .95 

.9, .9,.95 

I 

Intervention 

No 

Yes 

No 

No 

Yes 

No 

No 

Yes 

No 

No 

Yes 

I 

SSE 

612, 112 

377, 131 

989,782 

367,016 

256,084 

723,227 

375,958 

268, 771 

773,161 

382,015 

282, 748 

l 
I 
I 
I 
I 
I 
I 

Fit 

206,293 

94,317 

526,853 

46,357 

30, 779 

410,920 

42,533 

31,441 

316,081 

21,971 

19,020 

. The improvement of the dynamic model over the static version is evident confirming the 

· suggestion of frequent chauges in the structure o f the model. These are small specially 

when compared to the change taking place at t == 18. The final column in Table 2 gives the 

sum of the squared fitted errors. These are given by the difference between the observation 

and the levei of the series as estimated using the whole data. It is of secondary importance 

here because it can only be obtained retrospectively and therefore, is of little use for 
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forecasting. It is striking, however, to see how small they are when compared to their 

respective SSE showing how misleading fitted figures can be in forecasting. 

We consider in detail now the best model within each forro of growth, namely, that 

· with discounting and intervention. It is interesting to assess first the importance of inter­

vention. It reduces the SSE by up to 34% and the main reason for it is given in Figure 2. 

It shows the tra.jectories of 03 with intervention ( continuous tine) and without intervention 

(dashed line). Although 63 has not changed, the intervention in 01 and 02 is enough to 

allow great changes in 03. H intenvention is not performed, however, the model, interpreta 

the event as indicative of greater change in 03 than is rea.lly ta1dng place increasing it far 

too much. The most drastic effect is observed for the Gompertz growth in Figure 2.b where 

the lack of intervention susta.ins the value of 03 above 1 whereas intervention brings it well 

below 1 after 6 months. A '3imilar but less marked effect can be observed in Figure 2.c. 

Also, the tra.jectories of ~-l exhibit similar patterns but the variance without intervention 

almost doubles that obtained with intervention as shown in Figure 3 for the identity link. 

This doubting occurs because the model without intervention treats the change almost 

entirely as extra.randomness in the observation process. 

< Place Figure 2 about here > 

< Place Figure 3 about here > 

The foreca.sts obtained with the three models are shown in Figure 4. The dashed tines 

are the data series and the dotted tines are the 2 s.d. limits of the t-student forecast distri­

butions of yt!Dt-l· They show fast adaptation to the change at t = 18 and the only other 

weak point is at t = 23 (July/87), a possible outtier. They show grea.t resemb.lance _par­

ticularly between the exponential and Gompertz models. Their pattern can be examined 

more closely by looking at the forecast errors in Figure 5, the dotted tines being their 2 

s.d. timits. The interval formed by these limits should include O if the model is adequately 

predicting in to the future. The exponential and Gompertz models only fail to do so at t = 
23 and the logistic model also fails at t = 20. These residuais however show no particular 

structure as autoregression and are considered adequa.te. 

< P lace Figure 4 about here > 

< Place Figure 5 about here > 
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Figure 6 shows the tra.jectories of 03 for the above models along with respective 2 s.d. 

limits. The exponential model retains a trajectory above 1 most of the time although with 

enough uncertainty to make it inconclusive as to w hether it is an explosive behaviour. The 

same can be said about the other models where three distinct periods can be identified: a 

stable one up to the end of 1986 with an asymptotic behavi0ur, the next semester where 

there is some indication of an explosive behavour. Following this period, the value of 03 

drops substantially indicating once again an asymptotic behaviour but steadily increases 

back towards 1. These graphs serve as a controlling device signalling when the process 

is out of control or leading towards it as indicated at the end of the series. These could 

be useful indications to government policy bodies and international institutions like WHO 

that would act accordingly. 

< Place Figure 6 about here > 

During the process of analysing this series, four data points from t = 30 (Febru­

ary /1988) to t = 33 (May /1988) became available to us. They were then used in a 

medium-term forecast exercise. Namely, the forecasts for y29+k, k = 1, 2, 3, 4 based on 

D29 where derived and compared to the actual values of the series. These are shown in 

Table 3 and plotted as small squares in Figure 4 along with their 2 s.d. limits. Apart 

from the value for Feb~;uary /88, another possible outlier, the forecasts based on the logis­

tic model seem very good. They are better then those of the other models that do not 

increase that fast. 

We do not attempt at this stage to provide any long-term foreca.sts. As it is clear 

from the above discussion, the process is changing substantially in different periods of time 

and there is no indication that this is not going to hold in the near future. Forecasts long 

into the future are to be avoided since they are likely to be b~ on information that is 

no longer correct. Also, the 2 s.d. limits become so far apart that ·a likely interval for the 

forecasts will be hopelessly 1arge. 
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Table 3 

Medium-term forecasts with the intervention models 

I Month I Data I Logistic Gompertz ExponenÚal 

Feb/88 2537 2762 2734 2745 

Mar/88 2956 2925 2872 2890 

Apr/88 3100 3105 3018 3043 

May/88 3378. 3305 3171 3205 

5. Discussion 

This paper presents an approach to model the evolution of AIDS in Brazil. Using the 

class of GEGM's, it was observed that the links that are more commonly used (,\ = ±1, O) 

give comparable results. This also occurred with Duong & Mac Neill (1987) when analysing 

AIDS data from Cana.da. One reason for it is the difficulty in discriminating between 

these models mentioncd above. With AlDS data, there is an extra complication caused 

by the fact the we are still observing the initial part of the evolution. The identification 

of the particular model better suited to the data involves consideration of a considerable 

part of the evolution which requires extrapolation. We have aheady cautioned against 

extrapolating too for ahead and the data seem to be supporting it. 

An improvement of the model could be obta.ined by use of explanatory variables. We 

have only used time series models in arder to establish the pattern of evolution followed 

by the data but variables judged to be related to the number of cases could be considered 

in the model. There are many different ways that this could be dane since they can affect 

only some of the parameters of the model or directly through th~ mean function. 

A related point is data disaggregation. One possibility is to analyse the evolution 

of AIDS by each of a number of groups instead of using the grand monthly total. Data 

could be divided geographically by state or region, by risk group, by sex, age and so 

forth. This could perhaps lead to a more established pattern in some of the groups . 

. Another data problem is underreporting. The number of AIDS cases not reported in 

Brazil is considered to be substantial and is a worrying feature from the control point of 

view. Theoretically, it could be incorporated in to the analysis by modelling the mechanism 
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of underreporting. This is generally unknown and its knowledge could help solving the 

problem of underreporting itself. 
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Appendix 

Number of notified cases of AIDS in Brazil 

Month No. of cases Month No. of cases Month No. of cases 

Sep/85 432 Sep/86 841 Sep/87 2102 

Oct/85 483 Oct/86 875 Oct/87 2237 

Nov/85 520 Nov/86 921 Nov/87 2325 

Dec/86 540 Dec/86 982 Dec/87 2458 

Jan/86 574 Jan/87 1012 .Jan/88 2651 

Feb/86 625 Feb/87 1263 

Mar/86 657 Mar/87 1542 

Apr/86 673 Apr/87 1696 

May/86 725 May/87 1835 

Jun/86 739 Jun/87 1981 

Jul/86 790 Jul/87 1906 

Ag_oL86 829 AgoL87 2013 
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