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Apresentação

Estimação com Calibração: Quando e Por quê, Quanto e Como.

Esse assunto foi objeto de estudo realizado pelo autor durante Programa de Pós

Doutorado realizado na Universidade de Southampton, Inglaterra, nos 4 meses

compreendidos entre novembro de 2002 e fevereiro de 2003. O relatório que ora está sendo

disponibilizado foi originalmente produzido em inglês. Porém, a importância de seu

conteúdo, que é fortemente relacionado com as práticas que vêm sendo adotadas no

processo de expansão das amostras das pesquisas realizadas por amostragem no IBGE,

justifica não só essa divulgação, como estimula a preparação de uma versão em português.

O documento apresenta uma revisão da literatura sobre métodos de calibração

usados na ponderação e estimação de pesquisas por amostra, aponta referências

bibliográficas relevantes, discute questões importantes que surgem quando os métodos de

calibração são usados em situações reais de pesquisa e aponta critérios que podem ser

usados para avaliar se sua utilização foi bem sucedida ou se ocorreram dificuldades que

demandem revisão dos resultados.

Sonia Albieri
Coordenadora da Coordenação de Métodos e Qualidade
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1. Introduction

The main purpose of this report is to provide a literature review of calibration methods

used for sample survey weighting and estimation, pointing to the most relevant references,

as well as to discuss key issues arising when calibration methods are applied to real survey

situations.

The report is structured as follows. Section 2 introduces the basic framework and a

definition of calibration that we shall adopt throughout. Section 3 discusses reasons for

calibration and situations when calibration is worthwhile. Section 4 discusses practical

problems which one may face when performing calibration estimation. It also includes a

review of several alternative methods for calibration, developed in response to the

challenges posed by practical problems. Chapter 5 discusses some criteria that can be used

to assess the success of calibration at any particular survey application. Chapter 6 provides

some concluding remarks.

2. CALIBRATION ESTIMATION: A FRAMEWORK

Let {1,…,k,...,N} be the set of labels that uniquely identify the N distinct elements of a

target finite population U. Without loss of generality, let U = {1,…,k,...,N}. A survey is carried

out to measure the values of J survey variables. Denote by )( 1 ′ y  ,  ,y  = kJkk Ky  the J×1

vector of values of the survey variables for the kth population element.

We assume that the primary purpose of the survey is to estimate the population

vector of totals N
k

ky 1YyT U
U

′== ∑
∈

 where YU denotes the N×J population matrix of y values

given by [ ]′= NyyyYU ,,, 21 L , and N1  denotes the N×1 vector of ones.
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Although censuses are sometimes carried out to collect data about certain

populations, the vast majority of surveys are sample surveys, in which only a sample of the

population elements (usually a small portion) are investigated. We assume that n distinct

elements in U are included in a sample s, U⊂= },,{ 1 nkks K , which is selected for

observation in the survey.

Hence the purpose of the survey is to estimate Ty on the basis of the available survey

data {yk ; k∈s}. The “standard” estimator for totals when these are the only data available

from the sample is the Horvitz-Thompson estimator defined as

              ∑
∈

=
sk

kky d yT̂                        (2.1)

where dk = 1/πk  is the design weight for unit k, and πk is the sample inclusion probability for

unit k. Denoting by πki the joint sample inclusion probability for elements k and i, here we

assume that all the first and second order inclusion probabilities are strictly positive, i.e.

πk > 0 and πki > 0 ∀  k,i ∈ U. The assumption of positive πki is satisfied by the designs

considered in this report, and is adopted throughout because it simplifies the presentation of

expressions for design variances and their estimators. However, it is not a crucial

assumption, since for many of the designs for which it is not satisfied reasonable

approximations and estimators for the design variance of estimators of totals (means) are

readily available (see e.g. Berger, 2002).

In most survey applications, however, the survey data may also include information

on some auxiliary variables )( 1 ′ x  ,  ,x = kpkk Kx , which may often be useful towards estimating

the unknown population totals of the survey variables Ty. Assuming for now full response to

the selected sample, there are two scenarios for availability of information about the auxiliary

variables that one may consider.

a) The full “population auxiliary data matrix” [ ]′= NxxxXU ,,, 21 L  is available from

the survey frame, in which case the finite population totals N
k

kx 1XxT U
U

′== ∑
∈

 of these p

auxiliary variables will also be known, together with the “sample auxiliary data matrix”

[ ]′= nkkks xxxX ,,,
21 L , namely the submatrix of XU obtained by keeping only the rows

corresponding to the units selected for the sample (k∈s).
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b) Only the “sample auxiliary data matrix” Xs is available, together with the vector of

auxiliary population totals Tx . For now we shall assume that Tx is known exactly.

In both scenarios where there is auxiliary population information available for some x

variables we may ask the question whether this information may be used for improving the

estimation of the target parameter Ty. The answer to this question is yes: quite often we can

do better when estimating Ty taking account of the available information about the x

variables than by using the standard Horvitz-Thompson estimator (2.1).

One way to do this is by calibration. The key idea behind calibration estimation is as

follows. Although we know the population totals for the x variables, suppose we would try to

estimate them from the sample, using the Horvitz-Thompson estimator (2.1). This would lead

to the estimation of Tx by ∑
∈

=
sk

kkx d xT̂ . However, these estimates xT̂  often would not match

the corresponding population totals Tx exactly, leading to the so-called “calibration error”

xx TT −ˆ . To avoid this “error”, we can try and modify the estimator in such a way that there

would be no calibration error. This may be accomplished by using a “calibrated” estimator

where the design weights dk are modified, giving way to new weights wk to be used in the

calibrated estimator

∑
∈

=
sk

kkxC w xT̂ (2.2)

where {wk, k∈s} are case weights such that there is no calibration error, i.e., satisfying

0TxTT =−=− ∑
∈

x
sk

kkxxC wˆ (2.3)

The conditions (2.3) are called the “calibration constraints”. The idea is that if the

“calibrated” weights {wk, k∈s} succeed in reducing or avoiding error when “estimating” the x

totals, they may also reduce the error when estimating the y totals, using the calibration

estimator:

∑
∈

=
sk

kkyC w yT̂ (2.4)

The “calibrated” case weights {wk, k∈s} may depend on all the information available

about the auxiliary variables x, but not on the survey variables y. If this is the case, then (2.4)

is a linear estimator of Ty.
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In this report, we concentrate on “calibration to total” estimators of the form (2.4), i.e.,

linear estimators defined by sets of weights {wk, k∈s} satisfying the “calibration to totals

constraints” (2.3). Other forms of calibration constraints may be considered, such as

calibration to higher-order moments or even to the finite population distribution function of

the auxiliary variables (see the discussion in section 10 of Chambers, 1997). However, these

other forms of calibration estimators shall not be considered here, and for simplicity, we shall

follow the prevailing simple denomination of the estimators defined by (2.4) with weights

satisfying (2.3) as “calibration estimators”.

A large number of sets of weights {wk, k∈s} may satisfy the calibration constraints

given the sample data Xs, the design weights {dk, k∈s} and the population totals Tx. One way

of selecting those that lead to “reasonable” sets of weights to be used to estimate totals for

the y variables is to think of calibration weights wk as modifications to the design weights dk

that change them the least. This is justified because using the design weights dk provides

the corresponding Horvitz-Thompson estimator (2.1) with desirable properties such as

design-unbiasedness and consistency (in the sense that as the sample size increases, the

estimator converges in probability towards the right target Ty).

Deville and Särndal (1992) defined a family of calibration estimators for Ty where the

weights wk  are chosen such that specified distance functions measuring how far the wk  are

from the dk are minimised. Their idea is to minimize

( )




∑

∈sk
kkkP ,dwGE (2.5)

or equivalently minimize, for every sample s,

( )∑
∈sk

kkk ,dwG  (2.6)

subject to (2.3), where ( )kkk ,dwG  is a measure of the distance between wk  and dk satisfying

some regularity conditions to be specified later, and EP denotes the expectation with respect

to the probability distribution induced by the sampling design used to select the sample s.

One popular choice for the distance function is to take

( ) ( ) sk
dq
dw,dwG
kk

kk
kkk ∈−=

2

(2.7)
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for some known constants qk > 0, k∈s, to be specified. In this case, the solution is given by

kkk  g dw ×= (2.8)

where

( ) k
si

iiiixxkk dqqg xxxTT
1

ˆ1
−

∈





 ′
′

−+= ∑ . (2.9)

With the weights (2.8), the resulting calibration estimator for the total of a survey

variable yj can be written as

( ) jxxy
sk

kjkCy jj
TywT BTT ˆˆˆˆ ′

−+== ∑
∈

(2.10)

where ∑
∈

=
sk

kjky ydT
j

ˆ  is the Horvitz-Thompson estimator for ∑
∈

=
Uk

kjy yT
j

 and jB̂  is defined

in (2.13) below. Note that (2.10) is a generalized regression (GREG) estimator (see Särndal,

Swensson & Wretman, 1992), motivated by the working population model

( ) kjkj

kjjkkj

qσEV
Ey

/2=
+′= Bx

(2.11)

with the population regression coefficients Bj defined by












 ′= ∑∑

∈

−

∈ UU
xxxB

k
kjkk

k
kkkj yqq

1

(2.12)

and corresponding sample estimators given by












 ′= ∑∑

∈

−

∈ sk
kjkkk

sk
kkkkj ydqdq xxxB

1

ˆ . (2.13)

If a single set of calibrated weights wk is to be used for all survey (y) variables then

(2.9) means that the same set of constants qk will be used for all survey variables as well. In

many applications, this would not be a problem, since a common choice is to make all these

constants the same, i.e. qk = 1 ∀k∈s.

However, in some cases different y variables might have residuals of the population

linear regression on the auxiliary variables that display different heteroskedasticity patterns.
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In such cases, the different sets of values needed for the constants qk  to represent such

patterns adequately might lead to different sets of calibrated weights, each set specific to

one or more survey variables. On one hand this might be justified on the grounds of

improved efficiency for estimating the total of each y variable. On the other hand this would

lead to potential problems of coherence. For example, weighted estimates of parts of a sum

might not match the weighted estimate of total for the sum of the parts. Hence the idea of

using different sets of weights for different y variables is unattractive in practice.

Although this in fact is not a requirement of calibration, we assume from now on that

the derivation of the calibration weights is made with the goal of using a single set of

calibrated weights {wk, k∈s} for estimation with all survey variables.

3. REASONS FOR CALIBRATION

Calibration estimators have some nice properties. First, calibration weights satisfying

(2.3) provide sample “estimates” for the totals of the auxiliary variables that match exactly

the known population totals for these variables. Hence, if the population totals of the auxiliary

variables have been published before the survey results are to be produced, then calibration

would guarantee that the survey estimates are coherent with those already on the public

domain. This property, although not essential, is one of the dominant reasons why calibration

is so often used in survey practice. It appeals to survey practitioners in many instances as a

way of enforcing agreement between their survey and some public domain totals for key

variables.

The second property is their simplicity, namely the fact that calibration estimates are

linear. This means that each survey record can carry a single weight to be used for

estimation for all survey variables. Calculation of the estimates for totals, means, ratios and

many other parameters is straightforward using standard statistical software. In the case of

the distance functions defined by (2.6) and (2.7), the calibrated weights are given in a closed

form expression and are easy to compute using standard statistical software.

The third property of such calibration estimators is their flexibility to incorporate

auxiliary information that can include continuous, discrete or both types of variables at the

same time. If the auxiliary totals represent counts of the numbers of population units in

certain classes of categorical (discrete) variables, then the values of the corresponding x

variables are simply indicators of the units being members of the corresponding classes.

Cross-classification of two or more categorical variables can also be easily accommodated

by defining indicator variables for the corresponding combinations of categories.
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Calibration estimators also yield some degree of integration in the sense that some

widely used estimators are special cases, e.g. ratio, regression and poststratification

estimators (see chapter 7 of Särndal, Swensson & Wretman, 1992), as well as incomplete

multiway poststratification (see Bethlehem & Keller, 1987).

Calibration estimators may also offer some protection against nonresponse bias.

Poststratification and regression estimation are widely used to attempt to reduce

nonresponse bias in sample surveys. The regression (calibration) estimator will be

approximately unbiased when the regression model (2.11) holds and the combined sampling

and response mechanism is ignorable given the set of x variables for which auxiliary

population information is available (e.g. see Bethlehem, 1988, Lundström & Särndal, 1999,

and also chapter 15 of Särndal, Swensson & Wretman, 1992).

All these reasons are powerful arguments for using calibration. However, when doing

so, users must be aware of some problems or difficulties that may be encountered as well.

First, we note that calibration estimators are not exactly design unbiased. In fact, the design

bias of the calibration estimator is given by

( ) ( ) ( ) 



 −=−= ∑

∈sk
kkkPyyCPyC dwEEBiasDesign yTTT ˆˆ (3.1)

If the calibrated weights are “close” to the design weights for all samples, then the

design bias will be negligible or close to zero. This supports the criterion used to define the

calibration weights wk, which requires that their distance to the dk be minimized. However, for

small or moderate sample sizes one has to be aware of the possibility of facing some

amount of design bias.

For large samples, the calibration estimator defined by the regression weights (2.8)

and (2.9) is asymptotic design unbiased and has approximate design variance (see Särndal,

Swensson & Wretman, 1992, p. 235) given by

( ) ( )( )( )ijikjk
Uk Ui

kkiCyP EdEdπππTAV
j ∑∑

∈ ∈

−= i
ˆ (3.2)

where Ekj is the residual of the population regression model (2.11) for the survey variable yj.

If the bias is negligible, we can then compare this approximate variance to that of the

standard Horvitz-Thompson estimator for 
jyT̂ , given by:
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( ) ( )( )( )ijikjk
Uk Ui

kkiyP ydydπππTV
j ∑∑

∈ ∈

−= i
ˆ . (3.3)

Under simple random sampling without replacement and assuming that qk = 1, the

above expressions simplify to

( ) 22 11ˆ
jj ECySRS Nn

NTAV σ




 −= (3.4)

and

( ) 22 11ˆ
jj yySRS Nn

NTV σ




 −= (3.5)

respectively, where 2
jEσ  is the variance of the residuals Ej and 2

jyσ  is the variance of the

survey variable yj.

We can then observe that the regression (calibration) estimator will be expected to

perform well in terms of precision when the variance of the residuals of the regression model

defined by (2.11) is small compared to that of the original y variable. This will be the case

when the linear relationship is a good approximation for the regression of y on x and the x

variables in the regression estimator have good predictive power for y. The two plots in

Figure 1 illustrate this idea. In this example, the residuals of the regression estimator for the

model y = Bx have smaller variance than the original y variable (model y = B), thus leading to

the regression estimator having smaller approximate variance than the variance of the

Horvitz-Thompson estimator for samples of the same size.

Figure 1 - Population residuals for Horvitz-Thompson (left) and regression (right) estimators
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In addition, two relatively straightforward variance estimators are available for use

with the regression estimator. Särndal, Swensson & Wretman (1992, p. 235) recommend

using

( ) ( )( )( )ijiikjkk
sk si

kikCyg edgedgππTV
j ∑∑

∈ ∈
−= πi1ˆˆ (3.6)

where jkkjkj y e Bx ˆ′−= . An even simpler variance estimator not requiring the g-weights is

given by

( ) ( )( )( )ijikjk
sk si

kikCys ededππTV
j ∑∑

∈ ∈

−= πi1ˆˆ . (3.7)

Both variance estimators are first order asymptotically design unbiased for the

approximate variance of the regression estimator, but (3.6) is also approximately model

unbiased (Särndal, Swensson & Wretman, 1989). In addition, Silva (1996, p. 48)

demonstrated that under simple random sampling without replacement and assuming that

the regression model (2.11) holds, the bias of (3.6) is O(n-5/2), whereas the bias of (3.7) is

O(n-2). Hence (3.6) should be preferred to (3.7). Holmes and Skinner (2000) support this

view based on results of an empirical study carried out to compare alternative variance

estimators for the UK Labour Force Survey (UK-LFS).

4. PRACTICAL PROBLEMS WITH CALIBRATION ESTIMATION

While calibration estimators possess a number of attractive properties, they are not

problem-free when it comes to practical applications. In this section, we review some of the

problems affecting calibration estimators and some of the approaches that have been

developed to tackle them. Before detailed discussion, however, it may be helpful to have a

quick list of the issues that should be of concern when performing calibration estimation in

practice:

A.  Samples are finite, often small in certain strata;

B.  Large numbers of “model groups” and/or survey variables;

C.  Negative, small (less than 1) or extreme (large) weights;

D.  Large number of auxiliary variables;

E.  Nonresponse;
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F.  Measurement error.

The last issue in this list (measurement errors and their effect on calibration), despite

its importance, is not going to be discussed here. Readers can find some discussion in

Skinner (1999). All the other issues will be dealt with in the following sections.

4.1 - Small Sample Sizes

The problem with calibration estimators when sample sizes are small comes from the

fact that their design bias may become important, relative to their variance. It is well known,

for example, that ratio estimators are design biased, and that the bias is O(n-1) (see

Cochran, 1977, p. 160-162). The ratio estimator is a special case of the calibration estimator

when the x vector includes a single continuous variable x, no intercept term is included, and

the qk constants are set to qk = 1/xk (assuming that xk > 0 ∀ k). It is recommended that ratio

estimators be used only for samples of sizes large enough so that the bias is negligible.

Särndal, Swensson & Wretman (1992, p. 251) suggest that samples of size 20 or more

should be sufficient for this to happen. Cochran (1977, p. 162) suggests that the coefficient

of variation of the Horvitz-Thompson estimator of the total of the x variable ( ( )xTCV ˆ ) should

be less than 0.1 (10%) before the bias of the ratio estimator can be ignored or considered

small in comparison to its standard error.

Despite these well-known “rules of thumb” or limitations that should prevent ratio

estimators from being used with very small samples, modern software makes it easy for ratio

and other calibration estimators to be computed for samples of any size, often without any

warnings that sample sizes may be insufficient to warrant safe utilization. This leaves room

for applications where not even minimal precautions are taken, like this one of checking

whether the sample size is adequate. In cases where sample sizes are too small, calibration

estimates may be subject not only to large variance (as expected due to the small sample

size) but also to noticeable bias. Users of calibration estimators are urged to avoid applying

the technique when sample sizes are too small. As yet, no simple safety rules regarding

minimal sample sizes were developed for the general family of calibration estimators.

However, one could at least suggest that the same rules applicable to simple ratio estimation

should be satisfied before applying some other form of calibration estimation.
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4.2 - Large number of “model groups” and/or survey variables

Another source of difficulties for using regression (or calibration) estimators is the

fact that these are often applied separately for a number of “model groups”, defined as

groups of units for which both sample membership and auxiliary population information is

available. These model groups may coincide with pre-defined sampling strata, or they may

be formed after the sample was selected, in which case they will play the role of post-strata.

When such model groups are numerous, small sample sizes may result for some (or indeed

many) of them.

The problem is often compounded by the fact that the number of survey variables

may also be large. In this case, although the computation of the calibration weights is carried

out just once (the weights do not depend on the y variables), the suitability of the underlying

models that provide the conditions for calibration estimators to perform well (in the sense of

providing residuals with small variance) should be verified. In some cases, this task may

become just too large to be feasible within tight production schedules that typical surveys

have to adhere to. For this reason, users are thus cautioned against attempting to perform

calibration at levels that are too detailed in the sense of involving too many model groups.

The more model groups are considered for the calibration, the more resources should be

devoted to model validation and analysis of the resulting calibration estimates.

This discussion resembles that for comparing separate and combined ratio

estimators. Separate ratio estimators are calibration estimators where calibration is

performed to totals known at the stratum (model group) level. Combined ratio estimators

involve calibration only at the aggregate level (for the sample as a whole or for some broader

groups formed from sets of pooled strata). Cochran (1977, p. 167) argues “the use of a

separate ratio estimate in each stratum is likely to be more precise if the sample in each

stratum is large enough so that the approximate formula for the variance of the separate

ratio estimator is valid, and the cumulative bias that can affect the separate ratio estimator is

negligible. With only a small sample in each stratum, the combined ratio estimate is to be

recommended unless there is good empirical evidence to the contrary.” I could not find

better words to put it myself, and would suggest that this advice should also be applied to

calibration estimators in general.

4.3 - Negative, small or extreme weights

The third set of problems comprises those situations arising when the calibration

weights are in some sense considered extreme or unrepresentative. One important case
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occurs when calibration results in negative weights, that is, in having some weights wk < 0

(or gk < 0). This situation represents no problem from a strictly theoretical point of view, but it

leads to two difficulties from a practical perspective. First, the usual interpretation of case

weights as the number of population units represented by the corresponding sample unit is

lost for these cases, and release of such weights would be a very uncomfortable decision for

many statistical agencies. The second problem is that negative weights might eventually

yield negative estimates for some domains with small sample sizes, which is not an

acceptable outcome for most practical survey applications when the survey variables are

intrinsically non-negative. We also note that negative weights may provide an indication of

some problem with the attempted calibration that needs attention from the statistician in

charge.

To tackle this problem of the possibility of negative weights, a number of approaches

have been developed. One approach that is implemented in software packages developed

by some statistical agencies is to compute the calibration adjustment weights gk that

minimize

( ) ( ) k
sk

kk
sk

kkkkk
sk

kkkk q/)(gddqdgddqdw ∑∑∑
∈∈∈

−=−=− 222 1 (4.1)

subject to the calibration constraints

0TxTT =−=− ∑
∈

x
sk

kkkxxC dgˆ (4.2)

and also to the additional boundary constraints

skU   gL k ∈≤≤ for  (4.3)

where 0 < L < 1 < U.

This is the approach adopted in the development of GES (Generalized Estimation

System) by Statistics Canada (Estevao et al., 1995). This problem corresponds to

minimization of a quadratic function (4.1) under linear (4.2) and (non-linear) boundary (4.3)

constraints. GES attempts to solve this problem using an efficient algorithm, but a solution is

not always guaranteed to exist. GES includes, in addition to determination of the calibration

weights, efficient estimation of totals, means and ratios for populations and by domains,

together with corresponding variances for stratified element or single stage cluster sampling

designs. Statisticians looking for a computational tool to implement calibration should give

this package due consideration. One drawback is its dependency on SAS statistical
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software, which makes this a reasonably pricey option. If SAS is already available, site

licensing of GES from Statistics Canada is not prohibitive for most large scale statistical

agencies, and would cost a lot less than developing an equivalent software.

Another implementation of the above approach is available in BASCULA (see

Nieuwenbroek & Boonstra, 2002). The main difference between GES and BASCULA is the

algorithm used to compute the calibration weights. BASCULA adopts an algorithm proposed

by Huang & Fuller (1978) to compute calibrated weights satisfying the boundary constraints.

As is the case with GES, BASCULA is also not always guaranteed to find a solution

satisfying all the specified constraints. BASCULA is a stand-alone program, and thus may be

cheaper to obtain than GES if the organization is not yet a user of SAS.

Another approach that was proposed to solve the problem of negative weights is due

to Deville & Särndal (1992), who defined the family of calibration estimators. In the previous

approach, the standard distance function leading to regression weights was maintained and

boundary conditions were imposed as additional constraints. The approach proposed by

Deville & Särndal consists of modifying the distance function to be used when computing the

calibrated weights, in such a way as to avoid the possibility of negative weights from the

start. Hence the idea is to define calibration weights that minimize

( )∑
∈sk

kkk ,dwG (4.4)

for every sample s, subject to the calibration constraints (4.2), where the distance functions

Gk can be one of the choices in Table 1. Note that the standard distance function (case 1) is

also included for completeness, because it is a member of the family, but it can yield

negative weights. All the distance functions considered satisfy some regularity conditions,

namely, for every fixed d>0:

a)  ( ) ( ) 0and0 =≥ d,dGw,dG kk ;

b)  ( )w,dGk  is defined in an interval Dk containing d;

c)  ( )w,dGk is strictly convex and differentiable twice in w;

d)  ( ) ww,dGk ∂∂  is continuous and maps Dk onto an interval Imk(d) in a one to one

fashion.
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Table 1 – Distance functions for calibration estimation proposed in Deville & Särndal (1992)
Case Distance Functions ( )kkkk ,dwGq ×

1 ( ) kkk ddw 22−

2 ( )[ ] kkkk ddww −−1log

3 ( )22 kk dw −  

4 ( )[ ]1log +− kkkk dwdw

5 ( ) kkk wdw 22−

6 ( ) ( ) UL
d
wg

U
gUgU

L
LgLg

k

k
k

k
k

k
k <<<=







−
−−+







−
−− 10,

1
log

1
log

The solution for the minimization problem can be obtained using the method of

Lagrange multipliers. Using this method, the wk that minimize (4.4) subject to (2.3) are

obtained as a solution to

( ) skw/,dwG kkkk ∈∀=′−∂∂ 0kλx . (4.5)

If a solution exists, considering the regularity assumptions adopted, it will be unique,

and given by

( ) kkkkkk gdqFdw =′= λx (4.6)

where F(·) is the reciprocal mapping of ( ) ww,dGk ∂∂  (see Table 2), ( )λx kkk qFg ′= and λλλλ is

the vector of Lagrange multipliers, that solves

( )[ ] xxk
sk

kkk qFd TTxλx ˆ1 −=−′∑
∈

(4.7)

The resulting calibration estimator is then given by

∑
∈

=
sk

kkkyC dg yT̂ (4.8)
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with the calibration adjustment factors gk defined by one of the calibration functions F(·) in
table 2.

Table 2 – Calibration functions corresponding to various distance functions
proposed by Deville & Särndal (1992)

Case “Calibration” Functions ( )uqF k

1 uqk+1

2 ( )uqkexp

3 ( ) 22/1 −− uqk

4 ( ) 11 −− uqk

5 ( ) 2/121 −− uqk

6
U1L0  ,

)1)(1(
,

)(exp)1()1(
)(exp)1()1( <<<

−−
−=

−+−
−+−

UL
LUA

uAqLU
uAqLUUL

k

k

7

 )1(if
)1()1(if1

 )1(if

k

kkk

k

/qU- u U
/qU-u/qL-uq

/qL- u L

>
≤≤+

<

(1) Note that the calibration function 7 corresponds to the distance function number 1 of table 1, but

with bounds specified for the calibration weights.

Hence an algorithm for computing the calibration weights may be specified as the

following sequence of steps.

Step 1: Compute the calibration error for the Horvitz-Thompson estimator of the totals of the

auxiliary variables: xx TT ˆ− .

Step 2: For the chosen calibration function F(·), solve the calibration equations needed to

determine λλλλ, namely

( )[ ] xxk
sk

kkk qFd TTxλx ˆ1 −=−′∑
∈

(4.9)
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This may be accomplished by using Newton’s method. First, define

( )[ ] k
sk

kkks qFd xλxλH ∑
∈

−′= 1)( . (4.10)

Then the step 2 of the algorithm requires finding the value λλλλ that solves

xxs TTλH ˆ)( −= . First we compute an initial value for λλλλ as

[ ]xx
sk

kkkk dq TTxxλ ˆ
1

1 −




 ′=

−

∈
∑ (4.11)

Then perform iterations of Newton’s method computing, at each iteration r=1,2,…,

the updated value

[ ] [ ])(ˆ)( 1
1 rsxxrsrr λHTTλHλλ −−′+= −
+ (4.12)

where

rsrs λλλλHλH =∂∂=′ /)()( . (4.13)

Iterations proceed until convergence (given specified tolerance limits) or until the

maximum number of iterations allowed is reached without achieving convergence, in which

case an alert should be issued that a solution was not found.

Step 3: Once the solution for λλλλ was obtained, compute the calibration weights

( )λx kkkk qFdw ′= . (4.14)

The calibration weights and corresponding estimators obtained as a result of this

algorithm preserve all desirable properties that we discussed in connection with regression

estimators (sections 2 and 3). In addition, raking ratio estimators such as used for weighting

persons in the UK-LFS may also be seen as special cases of the general class of calibration

estimators. Deville & Särndal (1992) demonstrated that members of this class have

asymptotic properties identical to those of GREG estimators based on the same set of

auxiliary variables. Hence, general calibration estimators defined by one of the above

distance functions are asymptotically design unbiased, with approximate variance given by

(3.2). In addition, their variance can also be estimated by (3.6) or (3.7).
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Calibration estimators of this type were implemented in the SAS Macro CALMAR

(Sautory, 1993). This program performs weight computation only, but a variant named

CALJACK was developed at Statistics Canada (Bernier & Lavallée, 1994) that includes

Jackknife variance estimation for totals, means, ratios and differences of these. CALMAR

also requires SAS, but a more recent (but limited) implementation of the method is available:

g-CALIB-S, developed at Statistics Belgium, runs under SPSS (Vanderhoeft, 2001).

Calibration estimation as now extended provides the tools to try and resolve the

problem of negative weights, which can be avoided by choosing calibration functions 2 to 7

in Table 2. It also gives some control over the problem of extreme weights or weights less

than 1, which can be avoided by choosing calibration functions 6 or 7 and making

}1/min{ s, kdL k ∈=  and specifying some suitable U. However, several of the problems

discussed before remain unsolved.

First, for small and moderate samples, bias may be an issue and now, the choice of

distance function may become important in this respect. Second, although the method is

geared towards avoiding negative or extreme weights, a solution is not guaranteed. Deville &

Särndal (1992) proved that the probability of finding a solution for λλλλ in step 2 of the algorithm

tends to one as n increases. However, it is not one with finite samples. Hence in some

applications the method may fail to converge depending on the choices of F(·), L and U.

When this is the case, users of the method should try and investigate the causes behind the

failure to find a solution. It may be due to small or “extreme” samples, in the sense that the

resulting calibration weights may need to be more extreme than we are prepared to allow for

when we specified the boundary constraints L and U. It may also happen because large

numbers of x variables are considered for calibration, which may lead to problems of

collinearity, an issue that we discuss in the next section.

4. 4 - Large number of auxiliary variables

One problem that the approaches discussed above do not tackle is what to do when

a large number of potential x variables are available to be considered for calibration. One

simplistic option is to consider every one of the potential x variables in the calibration. This

may seem desirable from a practical point of view, because calibration error would be zero

for all known population totals. However, this option may also cause a number of problems.

First, it may be more difficult to solve the system of calibration equations required for

determining λλλλ in step 2 of the algorithm, because its size increases with the number of x

variables, and computation may be demanding. Second, larger numbers of x variables may
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lead to collinearity problems that affect solution of the calibration equations. Bankier (1990)

and Sautory (1993) proposed discarding linearly dependent auxiliary variables prior to

attempting the solution of the calibration equations in step 2 of the algorithm. This solution is

rather easy to implement and does not lead to loss of calibration for any x variables, since

discarded variables are exact linear combinations of variables retained in the calibration

problem, and the resulting calibration estimators are linear. An alternative solution using

generalized inverses of matrices was implemented in the g-CALIB-S program (Vanderhoeft,

2001).

              Bankier (1990) and Bankier, Rathwell & Majkowski (1992) also proposed discarding

auxiliary  variables to control weight variation while retaining  the standard  distance  function

1. This solution leads to loss of calibration for discarded x variables, as well as to loss of

control over which x variables shall be calibrated upon.

An additional problem encountered when many x variables are considered in the

calibration is that of potential increase in the mean square error (MSE) of the resulting

calibration estimator. Silva (1996, chapter 4) and Silva and Skinner (1997) showed that

sometimes large numbers of auxiliary variables may actually reduce efficiency of the

calibration (regression) estimator for small to moderate sample sizes. For example, under

Simple Random Sampling without replacement (SRS) and assuming the model (2.11) to

hold with qk = 1 for every k, Silva (1996, p. 45) showed that

( ) ( ) ( )25
2

1 Ο11ˆ /
ySRS np/n

n
σn/N)T(NMSE −− ++−= (4.15)

where σ2 is the variance of the residuals of the regression of y on x, and p is the number of x

variables considered. This expression reveals that the MSE of a regression estimator can

actually increase as the number of x variables increases, if the increase in the second order

term p/n offsets the decrease in the variance of the residuals σ2. Of course, this is not a

problem if the sample is large, but for small to moderate samples, the number of auxiliary

variables may have some noticeable effect on the MSE of the regression estimator.

As an illustration of the problem, Figure 2 plots the MSE of the regression estimator

for increasing sets of auxiliary variables, assuming simple random sampling with n=100 from

a population of heads of households for which data were collected as part of the test

population census of Limeira, São Paulo state, Brazil, 1988.
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Figure 2 – MSE of regression estimator versus number of x variables

Silva and Skinner (1997) showed, in a limited simulation exercise, that regression

estimation after subset selection may be more efficient than saturated regression estimation,

for moderate sample sizes (n = 100; J = 5 ;10). Similar findings are reported by Clark (2002)

for n = 100; 250 and J = 24; 40. Both sources reported also that the incidence of negative

weights was smaller after subset selection than when the calibration used the saturated set

of x variables. This suggests that part of the problem with negative weights comes from

“excessive” calibration.

Although the idea of applying some form of variable selection procedure to select x

variables for calibration may lead to more efficient estimators for some specified y variables,

this approach is not problem-free. First, it leads to loss of calibration for discarded x

variables. Second, the approach is intrinsically univariate, in the sense that subset selection

is y-variable specific, which would imply different sets of weights for different y variables.

Also, variance estimation becomes more difficult after subset selection, as noted in Silva and

Skinner (1997). However, the message emerging from these studies is that performing

calibration or regression estimation “automatically” with all the available auxiliary variables

may not be an efficient strategy, particularly for samples with small to moderate sizes or

when the number of auxiliary variables is large relative to the sample size. In such cases,

devoting some attention to the selection of suitable subsets of the available variables is

recommended, even if one is not prepared to use formal model selection procedures like

those described by Silva & Skinner (1997). In repeated surveys, for example, one may

devote effort in the first few rounds of the survey to establish an adequate set of variables to
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calibrate upon, and then use the fixed subset for calibration in subsequent rounds of the

survey.

Some other approaches have been proposed to handle the case of negative or

extreme weights. Chambers (1997) proposed the so-called “ridge calibration” estimators,

where the basic idea is to minimize the modified distance function

( ) ( )xCxxCxk
sk

kkk qddw TT∆TT ˆˆ
γ
1/)( 2 −

′
−+−∑

∈

(4.16)

where ∆∆∆∆ is a diagonal matrix of calibration error costs, and γ is a scalar ridging parameter to

be specified. In this approach, there are no constraints to be satisfied. The resulting weights

are given by

( )
















 ′+
′

−+=
−

∈
∑ k

si
iiiixxkkk dqqdw xxx∆TT

1
1-γˆ1 (4.17)

Note that in this approach a measure of the amount of calibration error is

incorporated as the second term of the distance function. However, since there are no

binding calibration constraints, the resulting weights and estimator are no longer guaranteed

to avoid calibration error entirely. Some choice of γ such that all “ridge-calibrated” weights

(4.17) are positive is always possible. One idea may be to choose the smallest γ satisfying

this condition. Other approaches for choosing γ are discussed by Chambers (1997). Careful

specification of the “calibration error cost matrix” ∆∆∆∆ allows flexible selection of subsets of

auxiliary variables for which calibration error must be eliminated. To do so, it is sufficient to

use very large diagonal elements in this matrix corresponding to the auxiliary variables for

which calibration error must be zero. The approach is an improvement over procedures that

discard auxiliary variables altogether, in the sense that some control over the amount of

calibration error can be maintained for all x variables. Chambers (1997) considered other

versions of ridge calibration that have as a starting point weights derived under either a

model-based or a non-parametric model-based approach. He also considered outlier robust

modifications of this approach that can be of help in cases where outliers on the y variables

are of concern. These are y-variable specific, however, and hence shall not be considered

further here.

Rao & Singh (1997) proposed yet another approach along similar lines, which is

called “ridge-shrinkage calibration” estimation. Again the idea rests on minimizing a modified

distance function, but this time, under range restrictions (boundary constraints). The
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procedure is similar to the ridge calibration of Chambers (1997) if the initial solution satisfies

the boundary constraints. If not, these boundary constraints are relaxed and the procedure

iterates between adaptively modifying the calibration error cost matrix and the desired range

restrictions until convergence.

Hedlin et al (2001) also discussed the problem of extreme calibration weights. This

paper explored the behaviour of calibration (GREG) estimators when the underlying models

were misspecified, and proposed some diagnostics measures to assess the adequacy of the

model for a given survey situation. Part of the diagnostics considered the idea that the g-

weights defined by (2.9) are functions of well-known measures of influence of a sample unit

in the fitting of linear regression models. The diagnostics were used to locate the most

extreme g-weights, and to propose remedies that involved, for example, poststratifying the

sample and using regression or calibration estimation only for those sample units for which

the g-weights are not extreme, and using the simple expansion estimator for the poststrata

formed with the units with extreme g-weights.

The message, again, is that mere automatic calculation of the calibration weights is

not good practice, and some attention must be devoted to analyse the resulting weights to

assess whether the use of calibration or regression estimation is “safe” and efficient. One

simple way to do this is to perform data analysis of the g-weights and to try and flag down

those that are extreme in some sense. The most obvious cases are the negative or small g-

weights (those leading to final calibrated weights less than 1) or the very large g-weights

(say, with gk > U). The cut-off point U may be determined arbitrarily (say, make U = 5 or 10),

or by data-dependent methods (U > Q3+1.5(Q3-Q1)), where Q1 and Q3 denote the sample

quartiles of the gk, k∈s.

4.5 - Calibration and nonresponse

So far we discussed calibration estimation under the assumption of complete

observation of the selected sample. However, nonresponse is a pervasive problem. Most

real-life surveys will experience some amount of nonresponse, despite incorporating well

designed methods and procedures to prevent nonresponse. An important new issue brought

about by nonresponse is that of bias. Standard Horvitz-Thompson (π-inverse weighted)

estimators will be biased unless the nonresponse is completely at random, and even in this

unlikely situation, estimation of totals requires at least some simple adjustment to

compensate for the loss of sample units due to nonresponse.
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Calibration is an useful approach to try and reduce the bias due to nonresponse.

Lundström (1997) and Lundström & Särndal (1999) even suggest “calibration as a standard

method for treatment of nonresponse”. Calibration estimators are approximately design

unbiased if there is complete response, for any fixed choice of auxiliary variables. Under

nonresponse, however, calibration estimators may be biased even in large samples. Skinner

(1999) examined the impact of nonresponse on calibration estimators. Some of his

conclusions included the following:

• “the presence of nonresponse may be expected to lead to negative weights much

more frequently”;

• “the weights wk will not converge to the original weights dk as the sample size

increases”;

• “the variance of the calibration estimator will be dependent on the Gk functions

and revised methods of variance estimation need to be considered”.

The intended bias reduction by calibration will only be achieved, however, if the

combined nonresponse and sampling mechanisms are ignorable given the x variables

considered for calibration. This suggests that the choice of the x variables to be considered

for calibration has to take account of the likely effects of nonresponse, and in particular,

should aim to incorporate all x variables for which auxiliary population data is available that

carry information about the unknown probabilities of responding to the survey. Under a

simplified model where δk denotes the probability that a unit will respond to the survey given

that it is selected into the sample, and response is independent for distinct units, a condition

for the calibration estimator to be approximately unbiased under the joint sampling and

response distribution is that λxkkk q ′+=− 11δ  for every k and some vector of constants λλλλ (See

Lundström, 1997, p. 46). However, because the calibration weights wk are always of the form

( )λxkkkk qFdw ′=  (see 4.14), it is easy to see that calibration will lead to approximately

unbiased estimates when 1−= kkk dw δ , a condition that depends both on the choice of x

variables and on the form of the distance (or calibration) function used to obtain the

calibration weights.

One example where this question may be well illustrated comes from the weighting

performed for the UK-LFS (see ONS, 2001, section 9). In this survey, weighting takes into

account regional distribution (17 Regions or 454 Local Authorities), age (either 11 or 17 age

groups), and sex of the sampled individuals. These are variables for which auxiliary
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information is available at the population level from external sources. The number of x

variables used for the calibration is fairly large (1,002) and the distance function chosen is

type 2 in Table 1, corresponding to the weights implied by the raking ratio estimator.

However, a study of the incidence of nonresponse in this survey showed that nonresponse is

not completely at random, as indicated in the table in page 43 of the UK-LFS User Guide

(ONS, 2001). It appears that the probability of responding depends on characteristics such

as:

• Household composition;

• Employment status;

• Rent status and type of accommodation;

• Socio-economic status;

• Region of residence;

• Region of origin; e

• Marital status, age and education of head.

Clearly, then, one can see that calibration only on age, sex and region as is currently

the case cannot hope to eliminate all bias due to nonresponse. It is not the number of x

variable that matters, but rather having the right x variables! Of course this is easier said

than done, and in the case of the UK-LFS, clearly there are difficulties. For example, if

nonresponse is dependent on the Employment status, one could be tempted to try and

calibrate on external information provided from register based sources such as the claimant

count. For many of the other variables, though, reliable auxiliary population information may

be unavailable, or hard or costly to obtain.

The message here is that it is not sufficient to calibrate on “all that is available” to be

free from bias. Even more, Gambino (1999) suggests that in some cases calibration may

even make the matters worse, and argues “it is well known that in many surveys, young

males tend to be missed disproportionately. Since demographic estimates by age-sex are

typically used in calibration, the effect is to increase the weights of the young males who

happen to respond to the survey. If, for some variables of interest, the young males who

tend to become respondents differ substantially from the young males that tend to be missed

from the sample …, then the effect of calibration is to give more weight to a non-
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representative component of the sample”. Suppose we knew that the young males that then

to be missed more frequently are those living alone, and those that are more likely to

respond are those that are living with their parents or family. Hence the weighting should aim

to increase the weights of those in the first group (young males living alone) but not of those

in the second group (living with family). The crucial bit of information we would need to do

that would be population totals by age and sex and household composition (single person

households vs. other households). If this information is not available, there is still some

limited remedy to be tried. Weighting could be performed at household level and not at the

individual level. Hence young males living alone would have weights that depend on which

type of household they live in, but this would not be the bias-correction that we would be

aiming for, just the next best substitute given the available data.

The above example illustrates the issues one has to address concerning the use of

calibration to compensate for nonresponse. If the response mechanism is dependent on

household characteristics (apart from regional location), such as its size and composition, as

well as those of the head, then perhaps the household should be the unit for which weights

are computed, with individual members of the same household then receiving the household

weight.

Gambino (1999) warns that for nonresponse adjustment, “poor choice of adjustment

variables or classes can make matters worse”, and concludes that “it is our duty as

statisticians to work with the users to ensure that calibration tools are used wisely”. One

reason why calibration can make matters worse is because it may mask the effects of

nonresponse. For example, using unadjusted sampling weights to estimate population

counts by age and sex, one could locate the cells for which the estimates are under the

expected level by an amount that is too large to be due to sampling error. These are the

cells for which elements are more likely to be missed by the survey. Such estimates could

then be used to detect the cells for which the likely effects of nonresponse are higher. But if

estimates are computed only with calibrated weights, such deviations from the expected or

known counts will not appear. It would take users extra effort to compute the pre-calibration

estimates required to analyse the likely effects of nonresponse, if the pi-inverse weights dk

are made available together with the survey data.

5. CRITERIA TO ASSESS SUCCESS OF CALIBRATION

An important component of any statistical analysis or estimation job is the

assessment of how well the adopted procedures performed in the application at hand. With

calibration estimation applications, in addition to the usual estimation of variance that should
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be routinely performed, we suggest that it is also important to assess a number of other

aspects of the outcome. This is important to verify that some of the intended goals of

calibration have been reached and to check for the potential problems that may affect the

outcome.

As a first measure, we suggest examining the amount of calibration error remaining

for the complete set of x variables that were initially selected for calibration. This should

ideally be zero, if calibration error was eliminated entirely, but may be nonzero if some of the

x variables were discarded during the process of determining the calibration weights, or if

some of the approaches that do not lead to exact calibration are adopted. The average

relative absolute calibration error for the estimated population totals of the x variables is

given by
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A second measure, which is important to allow checking whether we need to be

concerned about bias with the calibration estimator, is the average coefficient of variation of

the Horvitz-Thompson estimates of the totals of the x variables, namely
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where ( )
jxTV ˆˆ  is an estimate of the variance of the Horvitz-Thompson estimator of the total of

the jth auxiliary variable, given by
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Some other measures that may be of interest refer to the distribution of the g-

weights. Two of these are the proportions of extreme (small or large) g-weights, where some

definition of what the acceptable range is needed:
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The coefficient of variation is another measure regarding the distribution of the g-

weights that may be useful:

( ) ggg
n sk
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g 1
 is the average g-weight.

The distance between the g-weights and the d-weights is also an important measure,

which we suggest should be considered:
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Note that we normalize this distance by dividing the calibration distance function by

the sample size, so that it is easier to compare between samples of different sizes. Yet

another possibility would be to divide by the sample size minus the number of x variables

considered, which would allow for sets of auxiliary variables of different sizes. We suggest

that the chi-square distance function be used even when the actual distance function that

was minimized to obtain the calibration weights is one of the other functions in Table 1.

Last, but not the least, users should try and access the gains from calibration in

comparison to standard Horvitz-Thompson estimators. This can be accomplished by

comparing the average efficiency for a specified set of y variables, given by:
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where the variances in the numerators are estimated using (3.6) and those in the

denominators are estimated using (5.3) with the x values replaced by the y values.

Using this set of seven measures and any others that might be providing information

about the same aspects is strongly recommended for users of calibration estimation.

6. CONCLUDING REMARKS

In this report we reviewed the literature on calibration estimation, and tried to convey

the message that it is a flexible, powerful and convenient approach to survey weighting and

estimation. At the same time, we pointed out some of the difficulties that users of the
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technique may face in practical applications, as well as provided some guidance on how

these can be detected and circumvented.

The value of calibration estimation for practical survey situations is clearly

demonstrated by the increasing number of software packages developed for its application

as well as the number of major surveys in several countries that rely on calibration for their

weighting and estimation. In countries like Canada, the United States, the United Kingdom,

and France, calibration estimation is used for the labour force surveys. In Brazil and Canada,

it is also used for the samples collected as part of the Population Censuses.

While this value is recognised, we would encourage users to be critical of the

outcome of calibration weighting, and stress the importance of careful checking of the

resulting weights and estimates, to see that they meet the performance criteria and high

standards of quality and reliability that is expected from mainstream survey statistics.

Calibration should not be used to “disguise” biased survey results, where coverage and

nonresponse bias are “covered” by means of simple calibration to known population totals.

Users of the technique should, above all, seek to be transparent about the methodology

application and of the assessment of its success, in order to provide users of the survey

results with the possibility to exercise a critical assessment of the fitness for purpose of the

resulting statistics produced with calibration estimators.

Finally, we would encourage data producers that choose to adopt calibration

weighting in surveys where microdata files are to be released, to provide secondary users

with the information needed for them to make proper use of the data, in the sense of being

able to compute point and variance estimates correctly. This is a lot more challenging than

when usual Horvitz-Thompson estimators are used, because information on the full set of x

variables used for calibration must also be released together with the original d-weights and

the final w-weights for each survey record. Research is still needed on how best to

accomplish this goal without sacrificing the necessary restrictions required for the protection

of confidentiality.
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